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Stress-Stress Correlation Functions in Lattice Gases 
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The complete time dependence of the stress-stress correlation functions in lattice 
gas cellular automata is calculated from the ring kinetic theory using numerical 
and analytical methods. This provides corrections, typically of 10-20%, to the 
usual molecular chaos calculations, where correlation functions decay exponen- 
tially. The resulting correlation function crosses over from an initial exponential 
decay to the long-time behavior calculated from mode coupling theory. The 
present theory, applied to the viscosity, accounts for a substantial part of the 
observed difference between the Boltzmann theory and simulations. 
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1. I N T R O D U C T I O N  

In this p a p e r  we discuss the  wal l -known lat t ice gas  cel lular  a u t o m a t a  
models  i n t roduced  by Fr isch,  Hasslacher ,  and  P o m e a u  ( F H P ) / x )  They  are 
ta i lored  for s imula t ion  on a computer ,  bu t  they also offer a chal lenge to 
test me thods  of  s tat is t ical  mechanics  and  kinetic theory .  One  of  the 
challenges is to  explain differences of up to  4 0 %  ~2~) be tween  the t r a n s p o r t  
coefficients measured  in c o m p u t e r  s imula t ions  and  those  ca lcu la ted  f rom 
the B o l t z m a n n  equation.  F o r  instance, in the so-cal led F H P  la t t ice  gas 
models ,  defined on the t r i angu la r  lattice,  the  r e p o r t e d  values for  the 
k inemat ic  viscosi ty  differ up  to  40 % from the pred ic ted  B o l t z m a n n  values  
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in the FHP-I model(a); differences of 15-25 % are reported in refs. 2 and 4 
for the FHP-III model. Even larger differences between measurements and 
the Boltzmann theory have been found by Boghosian and Levermore (3) 
for the collective diffusion coefficient in a purely diffusive lattice gas (no 
momentum conservation) defined on a square lattice. On the other hand, 
lattice gas simulations of self-diffusion problems show an excellent agree- 
ment (within 1% at all densities) between Boltzmann values for the diffu- 
sion coefficients of tagged particles, both in two and three dimensions. (5) 

The first goal of the present paper is to address this problem for the 
FHP models. This will be done by using the so-called ring kinetic 
theory,6, 7) to evaluate analytically and numerically corrections to the trans- 
port coefficients and compare the results with available simulation data. 

A second challenge is to calculate the observed time dependence of the 
velocity autocorrelation function of a tagged particle for all times. Its time 
sum gives the coefficient of self-diffusion. For short times this dependence 
is well described by the Boltzmann equation; for long times the observed 
behavior ~5'8'9'1~ is equally well explained by the mode coupling 
theory,11,12) or by the ring kinetic theory. (7' 13) However, for intermediate 
time no theoretical predictions are available. 

In the present paper we evaluate time correlation functions of 
microscopic stresses for all times with the help of the ring kinetic theory. 
We concentrate here on fluid-type functions, such as the stress-stress 
correlation functions in FHP models. Their time sums yield the viscosities 
for these models. 

The paper is organized as follows. In the next section the definition of 
the models is given, after which (in Section 3) the expressions needed from 
the kinetic theory of ref. 7 are given. The long- and short-time behaviors 
are analyzed in Section 4 and the numerical method is described in Section 
5. Finally, the results are discussed in Section 6. Some technicalities are 
deferred to an Appendix. 

2. LATTICE G A S E S  

A lattice gas is a collection of N particles defined on a d-dimensional 
regular lattice L# with a discrete number of velocities ei (i = 1,..., b), where 
b is the so-called number of bits. The lattice is contained in a periodic box 
of Lt lattice spacings in the l direction (l= x, y ..... d) with V= LxLy ...Ld 
the number of lattice sites. The state of an LGCA is described by the 
occupation numbers n~(r, t), r s &  ~ which take only the value 1 if the 
velocity channel or link i at node r is occupied and 0 otherwise. 

In this paper we restrict ourselves to the so-called FHP models, 
defined on a triangular lattice with six links per node. There are several 
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models, depending on the collision rules and on the presence of rest 
particles. FHP-I  has no rest particle (b=  6) and only binary and triple 
collisions, and FHP-II  and III have a rest particle (b = 7). FHP-III  is self- 
dual, i.e., invariant under the interchange of particles and holes. The precise 
definition of the collision rules can be found in ref. 2. 

The time evolution of an LGCA consists of two steps: collision and 
propagation. The collision step is performed according to certain collision 
rules specified in the collision operator I~(n), which is a nonlinear function 
of the occupation numbers n~. The collision rules may be deterministic or 
stochastic. They conserve particle number and momentum and satisfy the 
detailed balance condition) 1/ After the collision has taken place, the 
propagation step follows, in which a particle at node r with speed c~ moves 
to r + ci. Combination of collision and propagation step gives the evolution 
equation: 

S i n ~ ( r , t + l ) = n ~ ( r + c l ,  t + l ) = n , ( r , t ) + I ~ ( n ( t ) )  (2.1) 

where we have introduced the translation operator Si that shifts the argu- 
ment r in the occupation number to r +e; .  It can be represented as a 
b V x  bV  matrix with elements So.(r, r') = 6ij6(r', r + ci). The first term on 
the right-hand side of Eq. (2.1) represents the propagation, the second term 
the collisions. 

If f denotes the equilibrium average occupation number f = (ni(r, t)),  
the collision operator can be expanded around it as 

s ") . 6ni,...3ni~=-s bnj+s (2.2) 
1 

Ii(n ) = "~. "I .... ,, . tJ 

2=I 

where the fluctuations in the occupation numbers are defined as 6n;(r, t ) -  
ni(r, t) - ( h i )  = n;(r, t) - f ,  and the equilibrium relation I i ( f )  = 0 has been 
used. Repeated indices imply summation (Einstein convention). Some 
properties of the s coefficients are: 

(P1) g2!? ") . is symmetric in the labels (i~ --- i:.). 
I t  I . . �9 1 ) ,  

(P2) s . vanishes if at least two indices out of (il o-- i:.) are equal. 
Zl I - - .  t ) .  

(P3) s (linearized Boltzmann collision operator) is symmetric in i i y  

and j. 

The ring kinetic theory of ref. 7, the results of which are summarized 
in the next section, is formulated in terms of the kinetic propagator /', 
defined as 

Fo.(r, t ) ~ = ( 6ni(r, t) 6nj( O, 0) )  (2.3) 
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where ( . . . )  is an average over an equilibrium ensemble. It is normalized 
to 60.6(r, 0) at t = 0 ,  where 6 o and 6(r, r') are the Kronecker deltas of the 
velocities and positions, respectively, and 

K= (6ni fn i )= (nZi ) -  (n~)2 = f ( 1  - - f )  (2.4) 

The main object of interest in this paper is the stress-stress correlation 
function: 

~a(l) = I( ' - -1  ~ J 7  ( 6n,(r, t) 6nj(O, 0 ) ) j r  (2.5) 
r 

with a normalization jTjT= 1 so that ~b~(0)= 1. It can be expressed in 
terms of the kinetic propagator as 

0~(t)=Zje/'0(r, " o -  . ~ -  "~ t)j j  -j~I'#(O, t)j~. (2.6) 
r 

with the Fourier transform defined as P(q)=Z ,  exp(- iq .r )F(r) .  The 
currents ja  are different, depending on the correlation function considered. 

The correlation function for the shear viscosity v contains a current 

2 
j~ = ~ CxCy (2.7) 

,/3 

and that for the bulk viscosity ( contains 

j~ = (~)1/2 (�89 2 _ Co 2) (2.8) 

Here, Co is the speed of sound, defined as c2= Z i  c2/bd. Note that for 
single-speed models Co = 1/x/~ and j~ = 0, as is the ease for FHP-I. In fact, 
the ~a can be considered as components of a fourth-rank tensor 
T=~a=(ci~ci~-c26~)Fu(c~cj6-c26~a). As a fourth-rank tensor on a 
triangular lattice is isotropic, it has only two independent coefficients, 

2 
(2.9) 

Then the correlation functions are 

(~ = T~y,,y = ( T ~ , ~  - T~xyy)/2 

~b~ = (T~=~ + Txxyy)/2 
(2.10) 
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The two equalities on the first line are a consequence of the isotropy of the 
fourth-rank tensor. The viscosities are given by the long-time limit of the 
following correlation function expressions(14): 

1 1 ~ ~"('c) (2.11) v(t)=~+~ =1 

1 1 ~, ~r (2.12) ;(t) 

3. KINETIC THEORY FOR STRESS-STRESS 
CORRELATION FUNCTIONS 

In this section we summarize the results of the ring kinetic theory of 
ref. 7 in so far as they are needed in the present paper. This theory derives 
an equation for the kinetic propagator in terms of higher-order correlation 
functions. Then a Gaussian approximation is applied to obtain a closed 
integral equation, called the ring kinetic equation. It will be evaluated 
numerically in forthcoming sections, 

The propagator (2.6) is written there as 

['O.=['~ R Q(2) c~['o (3.1) �9 ~u rail  i2 il i : , j l j 2  l i l j 2  ~ l j  

where we have suppressed the q and t dependence of the operators F(q, t) 
and R(q, t). In this equation, S- '  =exp(- iq .c )  is diagonal and the 
Boltzmann approximation for the propagator is 

P~ t )= [S-'('O +..Q{'))],5.= [e-'q=('l] +..0~ (3.2) 

and the time convolution product is defined as 

t - - 1  

(f|  = ~ f ( t -  1 --z) g(z) (3.3) 

Furthermore, the ring operator is given by 

Ri,;2,i~j2(q, z)=~V~k/~i, ij(k, T)SjT'(k)/~,'2J2(q-k, z)Sj~t(q-k) (3.4) 

The ,-,(2) in (3.1) are the coefficients of the quadratic terms in the fluctuation 
expansion (2.2) of the collision operator. The structure of the ring term in 
(3.1) is a Boltzmann propagator (F~ a collision (s two parallel full 
propagators (FS-1), a recollision (f2(z)), and finally a Boltzmann 
propagator (F~ This is the normal structure of the ring collision term in 
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the kinetic theory of continuous fluids. (6) There are additional ring terms 
with 3, 4,..., b - 1  parallel full propagators (7) that will not be considered 
here. 

In the FHP models the currents ja in (2.6) are eigenvectors of 
f2 (1) with eigenvalue (-e)~), listed in Table I. Then we can express the 
correlation function as 

where 

and 

t - - I  

qt~(t) = ~b~)(t)+ ~ v(1  - ( . , oa )  z - 1  B~j.Rij, kl(O , t--7~-- l)Bakl 
z = l  

(3.5) 

a= ;ao(2) (3.6) B o . - - j  k~-ki j 

~b~)(t) = (1 - coa)' (3.7) 

In all formulas the summation convention is used. The first term on the 
right-hand side of Eq. (3.5) is the Boltzmann part ~ of the correlation 
function, which only takes into account uncorrelated collisions. In the 
literature, only this term has been considered. It decays exponentially, 
while the actual decay of the correlation function is algebraic. Nevertheless, 
the Boltzmann approximation gives predictions for transport coefficients 
that agree with computer simulations within 1% for the diffusion coef- 
ficient at all densities (5) and from 15 to 25 % for the viscosities. (2' 4) 

As a further simplification, we replace R in Eq. (3.5) by R ~ where R ~ 
is given by the right-hand side of Eq. (3.4) with the full kinetic propagator 
/~(q, z) replaced by its Boltzmann value/,,0(q, z). In this approximation, we 
are ignoring collision sequences that contain rings within rings. Equation 

o (3.5) with Ro, kt is the starting point of this paper. It will be evaluated 
numerically. The results show a crossover from exponential to algebraic 
time decay in the correlation function and give a correction to the 
Boltzmann values for the transport coefficients. In the next section two 
limiting cases for long and short times will be studied analytically. 

TABLE I. Eigenvalues of Bol tzmann Collision 
Operator ,  Qo) ja=  -m, ,  j,,,, for  FHP M o d e l s  ~ 

ii 

FHP- I  FHP- I I I  

m~ 3f(1 _ f ) 3  K(7 -- 8K) 
e~ 0 7x(1 -- 2K) 
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4. LONG- AND SHORT-TIME ANALYSIS 

4.1. Long Times 

Consider first the long-time behavior of the correlation function. As 
has been shown in ref. 7, the ring integral R(q, t) has a slow algebraic 
decay t -d/2, while ( 1 -  o96)' has a fast exponential decay. Hence, for times 
large compared with a characteristic relaxation time of the order of 1/o9 a, 
the ring integral R ~  in Eq. (3.5) can be approximated by 
R~ t) and we can perform the z summation, giving 1/co~. Then, at long 
times, the correlation function becomes 

1 a 0 a 
Oa(t) ~- ~ BijRij,  kt(O, t )B~l  (4.1) 

03 a 

If a~(q), with components a~(q)=aU(q, ci), denotes an eigenvector and 
e z.(q) the corresponding eigenvalue of the Boltzmann kinetic propagator 
fro, then 

/~~ = e - iq  "c('0 + if2 (1)) a~(q) = ez"~q)au(q) (4.2) 

The spectrum of/~o contains b modes (with b = 6 or 7 in the FHP models), 
three of which are slow or hydrodynamic modes; one of them is related to 
number and two to momentum conservation. In particular, there are two 
sound modes a = + with eigenvalue z~(q) = icocrq - �89 2 as q ~ 0 and one 
shear mode with z~(q)= - v q  2. The remaining ( b - 3 )  modes are fast or 
kinetic modes, with nonzero eigenvalue as q ~ 0. Here, 7 is the sound 
damping constant. It can be expressed in terms of the shear and bulk 
viscosity as 7 = v + ~. Making a spectral decomposition of/~0 in the expres- 
sion for the ring integral (3.4) gives (see ref. 7 for details) 

Ir R~ t)=~-~ ~ a~(q) aj(k  --q) 
q /zv 

x e x p [ z , ( q ) t + z ~ ( i k - q l ) t ]  a~(q) a ~ ( k - q )  (4.3) 

A peculiarity of the F H P  models is the occurrence of three additional soft 
modes, due to the conservation of staggered momentum. These staggered 
modes become soft at finite k values, given by the corners of the Brillouin 
zone. These soft modes should also be included in the k summation of 
(4.3). m~ As we are interested in the long-time behavior, only the slowest 
decay rates, corresponding to the soft modes, are of relevance. Then, the 
sum on g, v runs only over soft modes. In addition we use the property (7~ 

t.2(2),~..,~ _ 1 -- 2 f f  2 
i jk "V  " l ,  - ~ ~X)a;a; (4.4) 

822/70/34-20 
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which holds for all collision rules, and we obtain the basic equation of the 
mode coupling theory, 

ffa(t) = ~ IA~,~(q)l 2 e [z"(q)+z~(q)]t 
q /zv 

1 - 2 f  - -  " " a  ~ 

A~,~(q) = I f (1  _ f ) ] u z  ~i J, , (q) a ~ ( - q )  

(4.5) 

The amplitudes A~(q) have the standard form of mode coupling theory, 
i.e., a projection of a current j a  on a product of two hydrodynamic modes 
a~(q) aV(-q). Not  only does Eq. (4.5) yield in the thermodynamic limit the 
dominant 1/t tail of two-dimensional time correlation functions, (n) but the 
discrete q summation also accounts in an excellent way for finite-size 
effects. (9) The dominant long-time tail for the transverse stress-stress 
correlation function reads explicitly 

2-8 ( l _ 2 f ) 2 r l + l +  3 ] 1  (4.6) 

with r r the longitudinal and transverse diffusivities of the staggered 
momentum modes of the F H P  models. ~ The longitudinal stress-stress 
correlation function has a dominant tail given by ~ ( t )=4~v( t ) .  The 
algebraic t -1 tail in (4.6) implies that the transport coefficients (2.11) and 
(2.12) diverge logarithmically. This is the well-known problem of the 
nonexistence of two-dimensional hydrodynamics. We will return to this 
problem later. 

4.2. Short Times 

The behavior of ~"(t) can be obtained not only for long times, but also 
for short ones. For t = 0 ,  1 only the Boltzmann part is present in (3.5), 
because the convolution sum runs from -c = 1 to t -  1, i.e., the sum is empty. 
For t = 2, the sum in (3.4) is evaluated at z = 1, where 

0 _ K 

R;,~:,j,::(0, 0) -- 2"-V ~ k e x p [ - i k - ( e j , -  ej2)] 6~w-, 6~2j 2 

/ r  

= ~ 6(ejt, ej2)5,,j, 6,2j2 = 0 (4.7) 

The relation A o F / j (0 ,0 )=6 ; j  has been used [see below (2.3)]. The delta 
condition has to be satisfied with e jl ~ e j2 on account of the property P2. 
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This is impossible in regular geometries, i.e., in systems contained in a 
macroscopic periodic cell which is more than two lattice spacings wide in 
all directions. Hence R(0, 0 )=  0. However, in slab geometries (16) in which 
at least one dimension has been set equal to 2, the condition (4.7) can 
be fulfilled through the periodic boundary. This is the origin of the non- 
vanishing contribution to the correlation functions. There are no dynamical 
correlations in regular geometries at t = 1, 2, because the minimum time to 
produce a recollision is three time steps. 

Next we consider the ring integral (3.4) for general t values, and 
replace F by F ~ in (3.2) and set q = 0. With the help of the relation 

V -1 ~ exp[ik- (c - e ')] = 5(c, c') (4.8) 
k 

we obtain 

ROij.,kl(O, t) = 2 (~ "j- ~r ('~ + O ( 1 ) ) k l k 2  " " " ('~ + ff2(1))kt-lkt 

• (1 + t-2(')b~ , (~ + t2(1))ti~2 . . -  (~ + t2"))~,_~t, 

•  -'- +ek,, e j+et~+cl2+ --" +Ct,) (4.9) 

with k, = k, l, =/. The delta function is nonvanishing if the velocities form 
a closed polygon. This is the ring condition, expressing that the two 
particles under consideration have to be in the same node at the initial 
(t = 0) and final time t. The ring integral R(0, t) contains in principle b :t 
terms, and we have not been able to evaluate the general term. Here we 
only show the explicit calculation of R~ 1). This result has been used to 
test our computer code. 

To have a nonvanishing contribution to (4.9), we have to guarantee 
a _ _  that i • j  and k# l ,  because B q - 0  for i = j  in (3.6) on account of property 

P2. Below we will analyze the condition c; + c k =e j  + c t for the simplest 
model, FHP-I, without a rest particle. Consider Fig. 1: The different 
possibilities in the absence of a rest particle are shown in Figs. la- lc .  For 
fixed ci there are two diagrams of type (a), two diagrams of type (b), and 
five diagrams of type (c). The conditions in Fig. 1 can be summarized as 
i # j and 

6 ( e  i -J- C k ,  e j  + e l )  = 5il6kj "~ 6i, k + 3 5 j  l + 3 - -  ~ (4) (4.10) , vi, j+3,k+3, l  

The symbol 5 (4) on the right-hand side is equal to 1 if all the indices are 
equal, and 0 otherwise. It corrects for double counting of trajectories. The 
extension of condition (4.10) when rest particles are involved can be 
constructed in a straightforward manner from the diagrams in Figs. le and 
ld, but will not be written down. 
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a) 

\ / /  
\ / 

\ / 
\ 
-~t__ ~ -  

c) 

\ / \ \  
\\ \ / 

ek 

Fig. 1. Ring collision in R(t = 1) in FHP models involving two time steps, satisfying the ring 
condition el + ck = cj+ et (i~j; k ~ l). Diagrams (a), (b), (c) only involve moving particles; 
(d) and (e) involve a rest particle, denoted by i .  

Next  we need to evaluate the coefficients B~ defined in Eq. (3.6) in 
terms of  the coefficients /20.iIz)i2. These coefficients are calculated in the 
Appendix. As F H P - I  is a single-speed model ,  the correlat ion funct ion for 
the bulk viscosity has a vanishing current  [see (2.8)]. The only relevant 
correlation function is the one related to the shear viscosity, with a current  

2 
j~=--~CxCy= ( 0 , 1 , - - 1 , 0 , 1 , - - 1 )  (4.11) 

The matrix B v follows after a lengthy calculat ion from (3.6) and (A3) in the 
Appendix, with the result 

where 

B y  = 

0 a - a  0 a - a \  

a 0 0 a - b  0 

- a  0 0 - a  0 b 

0 a - a  0 a - a  

a - b  0 a 0 0 

- a  0 b - a  0 0 

(4.12) 

a = 3 f ( 1 - - f )  z, b = ~ ( 1 - - f ) 2 ( 1 - - 2 f )  (4.13) 

It satisfies the relation Bb = B;+ 3,j§ 3. 
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Finally, we need in (4.9) the values of the Boltzmann collision 
operator f2 ~ for FHP-I. Its general expression can be found in the 
Appendix. We quote here only the independent elements; the remaining 
ones can be obtained using symmetry properties: 

(2 pi ) = - 2 c - d ;  

Q(x . )  - -  o 0 )  
i , t +  1 - -  " u i ,  i + 5  = C + d; 

c = �89 _ f )3 ;  

f2 ~) - - 2c + d i , i + 3  - -  

(2(1) - o ( ~ )  = c - - d  
i , i + 2  ~ " ~ i , i + 4  

d = f 2 ( 1  _ / ) 2  

(4.14) 

The coefficients c and d are the contributions to f2 (1) coming from binary 
and triple collisions, respectively. Inserting (4.10) and (4.12) into Eq. (4.9) 
and Eq. (3.5) for t = 3, we obtain, after some algebra, 

~bv(3) = ~b~)(3) + 8x[a2(5c 2 + 2d 2 - 4dc) + ~b2(2c - d) 2] (4.15) 

A similar analysis for the FHP-III model gives 

~b~(3) = ~b;(3) + JK2(1 - 2f) 2 

x (2224x s - 4620x 4 + 3595x 3 - 1340~c 2 + 246tr 16) (4.16) 

q~c(3) = qt:o(3 ) + 7t~2(1 - 2 f )  z 

• (1264x 5 - 2304x 4 + 1498x 3 - 458x 2 + 69x -- 4) (4.17) 

where ~v(t) and ~br are, respectively, the correlation functions related to 
the shear and bulk viscosity. Notice the overall factor of (1 - 2 f )  z appear- 
ing in the excess correlation functions in Eq. (4.17) for the model FHP-III. 
It implies that it vanishes for a half-filled lattice, where f =  1/2. This is a 
typical effect present in self-dual models. The factor (1 - 2f)  originates from 
the coefficients B~ for FHP-III, as defined in Eq. (3.5). Then, the ring 
corrections to the Boltzmann value are vanishing for f =  1/2. Only higher- 
order diagrams may be present in this case, so that deviations from the 
Boltzmann result are expected to be small. We recall from (4.5) that the 
long-t ime behavior of the ring integral for the stress-stress correlations is 
proportional to (1 - 2 f )  z in all lattice gas models. The ring contribution to 
the correlation functions at t =  3, ~b~(3)_= flY(3)-~b~(3), represents at most 
about 1% of the Boltzmann value for the FHP-I  model. However, in the 
FHP-III  model something peculiar happens to the Boltzmann correlation 
function ~b~. In a large density interval, fo < f <  1 - f o  with f 0 -  0.23, the 
correlation function oscillates around zero with an exponentially decreasing 
amplitude I 1 - o)v I', where 1 < coy < 2. Exactly at the densities fo and 1 - fo 
the correlation function ~ ( t )  = 0 for a / / t imes t ~> 1. This is illustrated in 
Fig. 2b, where the Boltzmann correlation ff~(3) as well as the ring contribu- 
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(a) 

|1  
. =J  

10" 1 

10" 2 

10 -3 

10 -4 

10 -5 

10 "6 

10 -7 

[ i i i i r i i i 

FHP-I 

..... Boltzmann 

...... Ring 

1 
0,0 0,5 

f 
1.0 

(b) 

- e -  

0,010 

0.000 

-0.010 

r t I i i i i r t i 

i i FHPrIiI 
..... Boltzmann (shear) ' : 

, '~ --- BolUzmann (balk} .t 
: "~ - -  Ring (shear) / 

"C -" Ring (haZkl i 
| ' " i 

0,0 0,5 1,0 

f 
Fig. 2. Stress-stress correlation function at t---3: Boltzmann [#~(3)] and ring [~ (3 ) ]  in 
(a) FHP-I and (b) FHP-III. Note that ~ ( 3 ) < 0  in (b) for fo<f<l- fo  (fo=0.23), 
indicating an oscillating Boltzmann correlation function. 

tion (3.5), f f ~ ( 3 ) = ~ ( 3 ) - ~ ( 3 ) ,  are plotted as a function of the density. 
Close to f0 and 1 - f o  the ring contribution is larger than the Boltzmann 
term. 

5. N U M E R I C A L  C A L C U L A T I O N S  

The analytical scheme of Section 4.2 for calculating ~(t) at general t 
values does not seem feasible because the number of possible trajectories 
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grows as b 2t. Following a different strategy, we have developed a numerical 
scheme to calculate the correlation function. It is a calculation that grows 
linearly with the time t. The main computational task is to evaluate R ~ by 
means of the k summation in (3.4) at q = 0, where the propagators take 
their Boltzmann values (3.2). In the thermodynamic limit V ~  oo, this 
summation can be replaced by an integral over the first Brillouin zone: 
(l/V) Zk ~ (2n) -2 Smz dk. We have calculated this integral numerically. 
The approach is straightforward. First the integral is written as a sum over 
Gaussian integration points in k-space, whose contributions have to be 
summed with their corresponding Gaussian integration weights. For every 
k, we calculate the b x b matrix S-1(~ +12"~). This is simply multiplied t 
times to give the Boltzmann propagator (3.2). As this is laborious for large 
t values, a different approach is followed here. It is based on t values that 
are powers of 2. The "gaps" are filled in linearly with results for lower t 
values, yielding data for t = 2 p + i2 p-r, i = 0,..., 2 r - 1, p = 0, 1 ..... It is clear 
how the matrix multiplications have to be carried out. It turns out that for 
r =  2 this yields sufficiently smooth curves on log-log plots. The  same is 
done for - k .  The ( k ) ( - k )  products in (3.4) are multiplied with their 
corresponding weight and summed to yield the integral. No use has been 
made of model-dependent symmetries, except for the space reflection sym- 
metry. The latter implies that the total result is four times the real part of 
that of the first quadrant. We thus arrive at a b x b x b • b array Rgkz (b = 6 
or 7), which depends only on t. Finally, we perform the contraction with 
the (2 ~2~ and the currents j in (3.6). As a check, we also calculated the 
correlation functions jx_r(O, t)j x, jY/~(0, t)j  y, and jx/~(0, t)7 y, with jx = 
cxcx and j  y = CyCy. They are linearly related to the shear viscosity correlation 
function [as can be concluded from Eq. (2.9)]. 

As the shear, sound, and staggered modes fall off typically as 
exp(-k2t), for long times the main contribution comes from points 
close to the origin of the Brillouin zone. For  this reason we split up the 
integration of the first quadrant into five parts, as illustrated in Fig. 3. For  
convenience we write k=, ky as x, y. The integral is then first split up into 
three parts: 

Jl=tq~.dra-t R(x' Y)=~=O'z=O R(X, yl dy dx+ f,=o,==o R(x, y) dxdy 

~2y,-~/~ R(x, y) dy dx (5.1) 

where xl = ~n, yt  = -~ x/~. Consider, for instance, the first term. There we 
take, for everj x, the N Gaussian integration points in the range from y = 0 
up to y = ~/3 x. The x themselves take on N values from 0 up to xl .  The 
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Fig. 3. Distribution of Gaussian integration points. The five parts of the integrals (5.1) and 
(5.2) are easily recognized. In this example there are 20 x 20 points in each part, 

third term is not relevant for long times, so it does not need a special 
treatment. The density of integration points in the y direction in the first 
(second) term is thus inversely proportional to the value of x (y), improving 
the accuracy near the origin. This is further improved by splitting up the 
first term on the right-hand side of (5.1) as 

ff' fx'fiR(x,y)dydx=fx:2 Fx"/3R(x,y)dydx 
= 0  " * y = 0  = 0  " y = 0  

x 1 x 

+;x ~ R(x,y) dydx (5.2) 
= x 2  "y =O 

Similarly we split up the second term of Eq. (5.1). The relative "accuracy" 
of the small-k region is then inversely proportional tO the values x 2 and Y2. 
These parameters are varied in order to stabilize the calculation. A typical 
value we used is x2/xl = Y2/Yl = 0.15. In Fig. 3 we show the distribution of 
integration points with 20 • 20 points for each of the five parts. We typi- 
cally use 100 times 100 integration points for each of the five parts of the 
integral. This is the rather straightforward method by which we obtained 
the results of the present paper. There may, however, be other than 
Gaussian integration algorithms that are even better tailored for the typical 
form of the integrand at long times. Here we are mostly interested in 
intermediate times. 

Once we have obtained the ring integral o Ro.,kl(O , T,), it is contracted 
with the B} given in Eq. (3.6), according to Eq. (3.5). Next the convolution 
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sum in (3.5) is carried out to yield the time correlation functions. Finally, 
the transport coefficients are calculated using the Green-Kubo expressions 
(2.11) and (2.12). 

6. R E S U L T S  A N D  D I S C U S S I O N  

In this section we present the results of the numerical integration of 
the ring integral equation (3.5) following the scheme proposed in the pre- 
vious section. We will show the crossover from the exponential Boltzmann 
decay to the algebraic mode coupling tails (l/t), as well as higher-order tail 
corrections ,~(1/t2). The contributions from the ring integral to the 
transport coefficients are also discussed. 

The typical behavior of ~b(t) is presented in Fig. 4 for model FHP-I at 
the reduced density f =  1/4, where the eigenvalue cot= 3f(1 _ f ) 3  is at its 
maximum, 09v-~0.316. The mean free time is t,, ~ 1/co ~ 3.16. It shows 
clearly the two regimes already mentioned. At short times (t<~ 5 t m )  the 
Boltzmann contribution to the correlation function is the dominant part. 
At intermediate times (5tm~t< 15tin) the effect of correlated collisions 
starts to show up, producing deviation from the Boltzmann result. For 
t>20tm the correlation function is completely dominated by the ring 
collisions and ~b(t) approaches to the mode coupling result. 

In Fig. 5 the Boltzmann contribution O~g(t) and the ring contribution 
~b~ = ~ba(t) - ~bg(t) in Eq. (3.5) are plotted separately for shear (a = v) and 
bulk viscosity (a=  ~) in FHP-III at reduced density f =  1/7, where the 

10 \ FHP-I 

i\ --- Boltzmann 10" 2 i\ -- Mode Coupling tail 

~ 103 "~~'i\'"-- -- " ' 

10 -4 

10 -5 . . . . . . . . . . . . . .  
50 100 150 

t 

Fig. 4. Total correlation function r 1 6 2  versus time in FHP-I at reduced density 
f =  1/4, where t m "~ 3.16. The dashed line represents the Boltzmann contribution ~ and the 
dashed-dotted line the mode coupling i / t  tail. 
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. . . . .  ~ . . ~ . ,  . . . . . . . .  
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Fig. 5. Correlation function ~a(t) for a = v, ( in FHP-III at f =  1/71 where tm- 1.4. The ring 
contribution ff~(t) is compared with Boltzmann ~(t) and mode coupling results. The + and 
x indicate the negative values of ~ ( t  = 3) and #~(t = 3), respectively. 

mean free path is typically t m = 1/O~v ~- 1.4. Crossover from exponential to 
algebraic decay typically occurs between 5 t  m and 8 t  m .  Beyond 15tin the 
correlation functions in FHP-I I I  are completely dominated by the mode 
coupling (MC) results. We also observe that the mean free time in FHP-I  
at this density is almost 3 times larger than in FHP-III .  The reason is that 
there are more collisions allowed in FHP-III  than in FHP-I .  

We further observe in Fig. 5 that ff~(t) in Eq. (3.5) vanishes for t = 1 
and t=2 .  Note  that for this density f f ~ ( t = 3 ) i s  negative. It reaches a 
maximum at t = 6 and starts to approach the MC tail either from below or 
from above, depending on the type of function ( a = v ,  ~) or the model 
(FHP-I, III) considered. 

Next, we will analyze the subleading corrections to the 1/t tail. In 
order to do so, we make an asymptotic expansion of the correlation 
function in powers of 1/t: 

A B 
~ ( t ) = 7 + 7 +  -.. (6.1) 

The first term in this expansion, A/t ,  has been shown both  analytically 
(Section 4.1) and numerically (Figs. 4 and 5) to be the mode coupling 
result. There are no theoretical predictions for B. To obtain the coefficient 
B, we subtract ~rac( t )= A/ t ,  multiply by t 2, and take the limit t--* m. The 
results are shown in Fig. 6 ( F H P - I , f =  1/4), Fig. 7 (FHP-III ,  f =  1/7), and 
Fig. 8 (FHP-III ,  f =  2/7). 
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Fig. 6. Subleading tail ~ t  - z  in FHP-I  at f =  1/4. 

a.a 

0.20 

0.10 

As the dominant term of all correlation functions is 1/t, Eqs. (2.11) 
and (2.12) yield a logarithmically diverging transport coefficient when 
t --* ~ ,  and hydrodynamics does not exist in two dimensions. However, in 
finite systems or at moderately large times, transport coefficients remain 
bounded. We have plotted the time-dependent shear and bulk viscosity, as 
defined in Section 2, for model FHP-I  (Fig. 9, f =  1/4) and for model 

0.15 

0.00 

-0.15 

100 

FHP-III 

f = I/7 

butk 

sbe~r 

101 102 
t 

Fig. 7. Subleading tail ~ t -2  in FHP-III  at f =  1/7. 
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Fig. 8. 
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-0.030 
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Subleading tail ~ t -2 in FHP-III  at density f =  2/7, where ~ ( t )  oscillates. 

FHP-III (Fig. 10, f =  1/7). The Boltzmann contribution Vo(t ) (dashed) 
approaches its long-time value exponentially fast. The ring contribution 
(2.11 ) with r from Eq. (4.6) increases logarithmically for long times, i.e., 
vR(t)  ,~ log t. 

In Fig. 11 we compare the data from the present theory (crosses) with 
the Boltzmann values. As present theory we take the Boltzmann value and 

Fig. 9. 

0,10 

0.05 
> 

i i i i r i i i i i r i I i 

FHP-I 

f = I14 

--- Boltzmann/IO 

--Ring 

f 
0.O0 . . . . . . . . . . . . . .  

0 50 100 150 
t 

Time-dependent shear viscosity in FHP-I  at  f =  1/4. Boltzmann [Vo(t)] and ring 
[-vR(t ) ~ log t]  results. 
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Fig. 10. 
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Time-dependent shear and bulk viscosity in FHP-III at f = 1/7. Boltzmann (%, ~o) 
and ring (vR and fiR) results. 

add the ring part at t =  150. The ring contribution to the transport 
coefficient increases only slowly with time. From 150 to about 500 time 
steps vR(t) + Vo increases only about 3 or 4 %. 

Finally it is of interest to compare our results with those from com- 
puter simulations. For the stress-stress correlation function no simulation 
data are available. However, for the shear viscosity, simulation data have 
been given by d'Humi6res and Lallemand/2~ The same data for FHP-III with 
higher statistical accuracy were recently obtained by Gerits and Van der 
Hoef. (4) These authors measured the relaxation of a transverse sinusoidal 
flow field that decays as exp(-vk2t). They also measured the decay of a 
sound wave; the bulk viscosity ~ follows from the sound damping constant 
through ~ = v + (. The time scales involved in these measurements do not 
extend beyond 300 time steps. Therefore, we compare our  results for the 
shear and bulk viscosities [vR(150)+v o and (R(150)+~o] with their 
simulation data (see Figs. 1 la and 1 lb, respectively). It shows that the ring 
approximation for the shear viscosity accounts for more than 60 % of the 
difference between Boltzmann and simulation results. The remaining dif- 
ference comes from more complicated collisionsl Also for the bulk viscosity, 
the present theory seems to account for the major part of the difference 
between Boltzmann and simulation results (see Fig. 1 lb). 

In summary, we have numerically studied the contribution of the 
simplest type of correlated collisions in lattice gases: ring collisions. The 
numerical results show the crossover from Boltzmann decay to mode 
coupling tails and coincide with the numerical results in both limiting 
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cases: Boltzmann at short times and mode coupling at long times. Also, it 
accounts for most of the difference between the Boltzmann transport coef- 
ficients and their simulated values in FHP-III .  The remaining difference 
originates from more complicated correlated collision sequences. A pre- 
liminary calculation of diagrams with additional parallel propagators at 
t = 3 shows a very small correction to the present result. It is not clear how 
the situation is for larger t. 
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; >  
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i i i i 
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', FHP-IIi 
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~ x~ .... Bolrzmann 
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x Boltzmann+Ring 

�9 o 

0.1 0.2 0.3 0.4 0.5 

(b) 0.15 
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0.00 
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i r i i 

; FHP-III 
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.... Boltzmann 
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\ , Silulations 

\,\~ x Boltzmann§ 

" t t 

0.1 0.2 0.3 0.4 0,5 

f 

Fig. 11. Transport  coefficients in FHP-II I  from Boltzmann, ring at t = 150, and simulation (4) 
results. (a) Shear viscosity v: v0, % +  va(150) and vsim; (b)  bulk viscosity ~: ~o, ~0 + ~R(150), 
and ~sim. 
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We are presently considering generalization to the tagged-particle 
problem, (~3) in particular to the velocity autocorrelation function (VACF). 
It is straightforward to adapt the numerical calculation described above to 
the tagged-particle problem: one of the two fluid propagators in Eq. (3.4) 
has to be replaced by the tagged-particle propagator. 

The tagged particle problem derives its special interest from the fact 
that very accurate simulation data for the VACF are available for short, 
intermediate, and long times. (5' 9. ~0) A comparison would make it possible 
to decide whether the simple ring integral in Eq. (3.4) with two parallel 
propagators does account quantitatively for most of the short and inter- 
mediate time behavior of the VACF, or whether rings with more parallel 
propagators have to be taken into account. 

Of course, the long-time behavior of the simple ring fully accounts for 
the simulated long-time tail and for the mode coupling theory, as 
demonstrated in ref. 13. 

A P P E N D I X .  E V A L U A T I O N  OF [1 (x) 

In this Appendix we give general expressions for the coefficients Q(;') 
defined in (2.2), in terms of the basic transition probabilities that define the 
nonlinear collision operator Ii(n) in Eq: (2.1). Let As~ denote the transition 
probability from the input state s to the input state o; then the collision 
operator can be written as 

ii(n ) = ~ (r _ si)Asa ~ n~k(1 _ nk)O - s~) (A1) 
a s  k 

For an explicit definition of states s and a and transition probabilities we 
refer to ref. 1. We recall that s,., s~, cry, nk (k=  1, 2,..., b) are Boolean 
variables. A convenient starting point for the fluctuation expansion of 
I i (n)=I~(f+6n) around equilibrium is the identity, valid for Boolean 
variable sj: 

n~(1--nj)l-sJ= fsJ(1-- f ) l - S J ( l  +6SJ~ nj) (A2) 

with x = f ( 1 - - f ) ,  6 s j = s j - f ,  and 3 n j = n j - f .  Inserting (A2) into (A1) 
gives a sum of products of an increasing number of 6n's. The first term 
vanishes because Ii(f)=O. Comparing this expansion with the defining 
equation (2.2) allows us to identify 

tcQ~ 1) = ~ (6a,-as,)As~ro(s) 6sj= g6~j + ~ &riAs~ro(s ) 6sj (A3) 
~ s  ~ s  

~ (~) ~c g2 o. ...j~ = ~ fia ~A~Fo(s) 6sj~ 3sj2 . . . 6sj~ (A4) 
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where 

b 

Fo(s) = l'-[ f~J (1 - f ) ' - s J=f ; (~ ) (1  _f)b-;(~) (A5) 
j = l  

with p(s)= ~i si. To obtain the second equality of (A3) the normalization 
condition Z ,  As~ = 1 has been used. 

As the FHP models, considered in this paper, are detailed balance 
models with symmetric transition probabilities A,,=A~,, it follows 
immediately that 0 (1) is a symmetric matrix if we use in addition particle 
conservation in the form A~p(s)= A,~p(a). The expressions (A3) and (A4) 
have been used in the body of the paper to obtain (4.12). 
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